Molecular mechanism and physiological functions of clathrin-mediated endocytosis

Harvey T. McMahon and Emmanuel Boucrot

Abstract | Clathrin-mediated endocytosis is the endocytic portal into cells through which cargo is packaged into vesicles with the aid of a clathrin coat. It is fundamental to neurotransmission, signal transduction and the regulation of many plasma membrane activities and is thus essential to higher eukaryotic life. Morphological stages of vesicle formation are mirrored by progression through various protein modules (complexes). The process involves the formation of a putative FCH domain only (FCHO) initiation complex, which matures through adaptor protein 2 (AP2)-dependent cargo selection, and subsequent coat building, dynamin-mediated scission and finally auxilin- and heat shock cognate 70 (HSC70)-dependent uncoating. Some modules can be used in other pathways, and additions or substitutions confer cell specificity and adaptability.

Clathrin-mediated endocytosis is the uptake of material into the cell from the surface using clathrin-coated vesicles (FIG. 1). Although clathrin-coated vesicles can also be formed from other membranous compartments, the term clathrin-mediated endocytosis is used to refer only to intake through vesicles formed from the plasma membrane (BOX 1). The pathway is versatile, as many different cargoes can be packaged using a range of accessory adaptor proteins. Clathrin-mediated endocytosis is used by all known eukaryotic cells. Other clathrin-independent entry portals (such as caveolin-dependent pathways) have been described, although their molecular details and cargo specificity are not as well defined (reviewed in REF. 1) (FIG. 1).

The uptake of material inside the cell was first visualized following the introduction of glutaraldehyde fixation in the 1960s; this generated electron microscopy images of vesicles with proteinaceous coats in many different tissues2,3. Clathrin was then identified as being the major protein making the lattice-like coat around vesicles, which were described as "vesicles in a basket" (REF 4).

Clathrin-coated vesicle formation proceeds through five stages that correspond to ultrastructural and cell biological observations: initiation, cargo selection, coat assembly, scission and uncoating. Following cargo selection and initiation of pit formation, soluble clathrin triskelia polymerize into hexagons and pentagons, the relative ratio of which accommodates a wide range of membrane curvatures; synaptic clathrin-coated vesicles require approximately 100 triskelia. Clathrin does not bind directly to the membrane or to cargo receptors and thus relies on adaptor proteins and complexes (such as adaptor protein 2 (AP2)) and accessory proteins (such as AP180 and epsin) to be recruited to the plasma membrane (TABLE 1). As with clathrin, all of the additional accessory proteins are cytoplasmic proteins that are recruited to sites of vesicle budding and, after the vesicle is formed, are recycled back to the cytoplasm for reuse in another cycle of endocytosis (FIG. 2a).

Although the endocytosis of cargo receptors can be stimulated by ligand binding (for example, epidermal growth factor receptor (EGFR)), other receptors (for example, transferrin receptor (TfR)) are constitutively internalized5. When cargo has been taken up, it is sorted in endosomes and either sent back to the surface or targeted to more mature endosomes and later compartments (such as lysosomes and multivesicular bodies)6 (FIG. 1).

In keeping with cargo versatility, clathrin-mediated endocytosis has a range of different functions. These include: regulating the surface expression of proteins; sampling the cell’s environment for growth and guidance cues; bringing nutrients into cells; controlling the activation of signalling pathways; retrieving proteins deposited after vesicle fusion; and turning over membrane components by sending these components for degradation in lysosomes.
In this Review, we highlight the fundamental nature of this pathway, which exists to select and gather together many different proteins into the one vesicle and to regulate cellular responses. We demonstrate the modular nature of the pathway, which allows it to have distinct functions in different parts of the cell and in different cells. Finally, we stress the fundamental role of clathrin-mediated endocytosis in cellular functions and discuss the low representation of mutations and deletion of its components in human diseases.

The clathrin-coated vesicle cycle
Ultrastructural and cell biological observations have defined the five stages of clathrin-coated vesicle formation (FIG. 2).

Nucleation. Morphologically, the first stage of vesicle budding involves the formation of a membrane invagination called a pit. Clathrin-coated pit initiation was traditionally thought to be triggered by the recruitment of the highly conserved protein AP2 to the plasma membrane. This can be mediated through its binding to endocytic motifs present in cytoplasmic tails of receptors and to the plasma membrane-specific lipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P$_2$). However, recent studies in yeast and mammalian cells indicate that the initiation stage may involve the formation of a putative nucleation module that defines the sites on the plasma membrane where clathrin will be recruited and vesicles will bud. This putative nucleation module is thought to assemble only at the plasma membrane because of a preference for PtdIns(4,5)P$_2$. It includes FCH domain only (FCHO) proteins, EGFR pathway substrate 15 (EPS15) and intersectins, and is thought to be required for clathrin-coated pit formation, as depletion of either FCHO proteins or EPS15 and intersectins has been shown to inhibit clathrin coat recruitment (BOX 2). The F-BAR domain of FCHO proteins can bind to very low curvatures, and its membrane-bending activity is required for progression of the clathrin-coated pits, suggesting a need for membrane curvature generation even before clathrin recruitment (BOX 2).

Cargo selection. The proteins of the putative nucleation module are then thought to recruit AP2, which, together with other cargo-specific adaptor proteins (TABLE 1), mediates cargo selection. After clathrin, AP2 is the most abundant component of clathrin-coated vesicles. It specifically acts at the plasma membrane, but similar protein complexes (AP1, AP3 and potentially AP4) are found associated with clathrin-coated vesicle formation on intracellular membranes. AP2 binds both cargo and PtdIns(4,5)P$_2$; it interacts directly with motifs in the cytoplasmic tails of transmembrane receptors through its μ-subunit and σ-subunit, and indirectly with cargo using its appendage domains to bind accessory adaptor proteins.

A wide range of plasma membrane accessory adaptor proteins has been identified in different cell types that bind to different receptors; for example, stonin 2 recruits synaptotagmin, Dishevelled binds Frizzled, and HRB recruits vesicle-associated membrane protein 7 (VAMP7). These cargo-specific adaptor proteins always bind the core adaptor AP2 (REFS 20,21) (FIG. 2b). FCHO proteins also have a putative ligand-binding domain, and thus cargo selection might start as early as the nucleation stage. Furthermore, the AP180 amino-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains are membrane-binding and membrane-bending modules, respectively, but they are also thought to be involved in cargo binding. As an extension, we predict that all membrane-interacting molecules in clathrin-mediated endocytosis are both cargo adaptors and curvature effectors. This would ensure curvature generation regardless of which cargo is selected.

Because AP2 binds clathrin and most of the accessory proteins, it acts as a major hub of interactions in the maturing clathrin-coated pit (FIG. 2a) and is the last stage that is observed exclusively during clathrin-coated vesicle formation from the plasma membrane, as downstream components, such as clathrin, dynamin and uncoating proteins, are also found in clathrin-coated vesicle budding events from other membranes. If maturation of the complex by recruitment of AP2 is prevented, then the nucleation complex is still assembled but clathrin is not recruited and vesicles do not form (FIG. 2c), which indicates a
Box 1 | Setting limits on clathrin-mediated endocytosis

There is some recurring confusion about the nature and extent of clathrin-mediated endocytosis in metazoans. The following points are important in this context.

Clathrin function is not limited to endocytosis

Clathrin is crucial in many other cellular processes, such as endosomal sorting complex required for transport (ESCRT)-dependent cargo sorting at endosomes11, protein secretion from the trans-Golgi network12 and mitosis14. Thus, perturbing clathrin (for example, through clathrin heavy chain RNA interference (RNAi)-mediated depletion13 or by sequestering it with the assembly protein 180 (AP180) carboxyl terminus mutant15) will have consequences far beyond its role in endocytosis. For example, the plasma membrane levels of a receptor can be decreased by clathrin RNAi as a consequence of its defective Golgi export or endosomal recycling induced by clathrin depletion15,16, leading to an indirect — and misleading — decreased internalization of its ligand. Moreover, because clathrin is also present on endosomes, live-cell imaging (even through total internal reflection fluorescence microscopy) of fluorescently labelled clathrin should be interpreted with caution, as not all signals recorded at (or near) the plasma membrane will be from clathrin-coated pits: a significant fraction could be from endosomes that are close to the plasma membrane16,17.

Dynamin-dependent and clathrin-mediated endocytosis are not synonymous

Although it has been established that some clathrin-independent, dynamin-dependent endocytic pathways exist18, many studies still use dynamin inhibition as evidence of clathrin-mediated endocytosis of cargo. Dynamin depletion (through RNAi), perturbation (using Lys44Ala19 or Lys535Ala20 mutants) or inhibition (using dynasore21, dynole-34-2 (Children's Medical Research Institute/Newcastle Innovation)22 or dynogo 4a (Children's Medical Research Institute/Newcastle Innovation)23 blocks endocytic processes far beyond clathrin-mediated endocytosis. Dynamin inhibition, although a powerful way to inhibit a large portion of cellular endocytosis, must therefore be complemented with more specific means of perturbation (see Box 3) to assess whether a receptor or cargo cells specifically through clathrin-mediated endocytosis.

AP2 is the core plasma membrane adaptor for clathrin in metazoans

Although this remains controversial, there is so far no evidence for clathrin-coated pit formation at the plasma membrane in the absence of adaptor protein 2 (AP2). The arguments for the crucial role of AP2 in clathrin-mediated endocytosis are: its central location at the heart of the clathrin endocytic interactome (FIG. 2b); its requirement for the uptake of the best-characterized clathrin-dependent cargoes, transferrin, and sorting nexin 9 (SNX9), which have SRC homology 3 (SH3) domains that bind the Pro-rich domain of dynamin (FIG. 2b, TABLE 1). Polyureaization around the neck of the nascent vesicle favours GTP hydrolysis and consequent membrane fission24,25. The precise mechanism is not clear, but the protein undergoes a GTP hydrolysis-dependent conformational change that probably helps to mediate scission26-30. Preventing the recruitment of dynamin, or inhibiting its activity, arrests vesicle formation at the stage of clathrin coat formation or vesicle scission31,32. Dynamin is also found in many other vesicle-budding pathways, in which it is recruited by a different subset of interaction partners (BOX 1).

Uncoupling and clathrin component recycling. Once detached from the parent membrane, the clathrin coat is disassembled from its lattice arrangement back to triskelia by the ATPase heat shock cognate 70 (HSP70) and its cofactor, auxilin (or cyclin G-associated kinase (GAK)) in non-neuronal tissues33-35 (FIG. 2a,b), allowing the detached and uncoated vesicle to travel to and fuse with its target endosome. Auxilin is recruited after clathrin-coated vesicle budding by binding to the terminal domains and ankles of clathrin triskelia36,37, and it localizes under the ‘hub’ of a neighbouring triskelia38. There, auxilin recruits HSP70 to a specific motif located at the foot of the tripod below the clathrin hub38,39, from which the uncoating reaction is initiated. One auxilin and three or fewer HSP70 molecules are needed per triskelia to get maximum disassembly in vitro40,41. It is important to remember that, when clathrin-coated vesicle scission takes place, it is unlikely that the clathrin cage is completed across the zone where the neck was attached, thus leaving a defect in the clathrin cage that allows the uncoating apparatus to start the uncoating process with ease. We predict that this is why uncoating takes place only after vesicle scission, as this is the only point when a defect becomes apparent. Changes in the phosphoinositide composition of clathrin-coated vesicles mediated by the phosphatase synaptojanin are

clathrin coat assembly. As cargo is selected and bound by AP2 or by cargo-specific adaptor proteins, the clathrin coat has to be assembled. Clathrin triskelia are recruited directly from the cytosol to sites of adaptor concentration on the membrane to help organize the forming coated vesicle. Clathrin is recruited to the plasma membrane by AP2 and also by accessory adaptor proteins (FIG. 2a,b). In the absence of clathrin, AP2 is recruited to the plasma membrane and forms puncta that colocalize with the nucleation complex, but the patch cannot mature (FIG. 2c). Polymerization of clathrin results in stabilization of curvature and displacement to the edge of the forming vesicle of some cargo accessory adaptor proteins and curvature effectors, such as EPS15 and epsin,18,29, where they are likely to function most effectively. It had been assumed that clathrin polymerization can mediate membrane bending as the coated pit invaginates19. However, because clathrin binds to the flexible region of most adaptor proteins (AP2, AP180 and epsin), the potential force generated by polymerization would be inefficiently transmitted to deform the plasma membrane. Instead, direct membrane interactions of curvature effectors are thought to sculpt the vesicle (BOX 2). In some cell types, a substantial pool of clathrin can also be found as flat lattices (where triskelia are arranged as hexagons only)31. These lattices are found mostly on the cytoplasmic side of the adherent membrane surface and have a slower turnover than clathrin-coated pits32.
<table>
<thead>
<tr>
<th>Protein</th>
<th>Human genes</th>
<th>Function</th>
<th>Domain architecture*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clathrin</td>
<td>CLTA, CLTB, CLTC</td>
<td>Self-polymerizing protein composed of three heavy and three light chains that form the clathrin triskelion, which can polymerize into flat lattices or cages</td>
<td> Appendage binding Clathrin heavy chain repeat</td>
</tr>
<tr>
<td>FCHO</td>
<td>FCHO1, FCHO2</td>
<td>F-BAR domain-containing proteins that nucleate clathrin-coated pits and generate the initial membrane curvature</td>
<td> μ-like</td>
</tr>
<tr>
<td>AP2</td>
<td>AP2A1, AP2A2, AP2B1, AP2M1, AP2S1</td>
<td>A heterotrimeric adaptor complex (α-, β2, μ2 and σ2 subunits) that links membrane cargo to clathrin and accessory proteins</td>
<td> α-appendage Individual subunits</td>
</tr>
<tr>
<td>EPS15–EPS15R</td>
<td>EPS15, EPS15R</td>
<td>AP2 clustering and scaffolding proteins</td>
<td>EH, EH, EH, UIMs</td>
</tr>
<tr>
<td>Intersectin</td>
<td>ITSN1, ITSN2</td>
<td>Scaffolding protein linking various components of the clathrin machinery</td>
<td>EH, EH, SH1, SH3, RHOGEF, PH, C2</td>
</tr>
<tr>
<td>AP180, CALM</td>
<td>SNAP91, PICALM</td>
<td>ANTH domain-containing PtdIns(4,5)P2-binding protein that binds AP2 and clathrin and is thought to regulate vesicle size</td>
<td>ANTH</td>
</tr>
<tr>
<td>Epsin</td>
<td>EPN1, EPN2</td>
<td>ENTH domain-containing membrane-bending protein that is a cargo-specific adaptor for monoubiquitylated receptors</td>
<td>ENTH UIMs</td>
</tr>
<tr>
<td>Amphiphysin</td>
<td>AMPH1, BIN1</td>
<td>N-BAR domain-containing protein that bends the membrane and recruits dynamin to clathrin-coated pits</td>
<td>N-BAR, SH1</td>
</tr>
<tr>
<td>SNX9</td>
<td>SNX9</td>
<td>BAR domain-containing protein that binds AP2 and dynamin</td>
<td>SH3, PX, BAR</td>
</tr>
<tr>
<td>Dynamin</td>
<td>DNM1, DNM2, DNM3</td>
<td>Self-polymerizing mechanoenzyme that triggers vesicle scission upon GTP hydrolysis</td>
<td>GTPase PH GED PRD</td>
</tr>
<tr>
<td>Auxilin, GAK</td>
<td>DNAJC6, GAK</td>
<td>J domain-containing protein that recruits HSC70 to clathrin cages for uncoating</td>
<td>PTEN DNAJ</td>
</tr>
<tr>
<td>HSC70</td>
<td>HSPA8</td>
<td>ATPase triggering uncoating of clathrin cages</td>
<td>ATPase</td>
</tr>
<tr>
<td>Cargo-specific adaptors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARH</td>
<td>LDLRAP1</td>
<td>Recruits LDLR to AP2</td>
<td>PTB</td>
</tr>
<tr>
<td>DAB2</td>
<td>DAB2</td>
<td>Recruits megalin and LDLR to AP2</td>
<td>PTB</td>
</tr>
<tr>
<td>Stonin</td>
<td>STON1, STON2</td>
<td>Recruits synaptotagmin to AP2</td>
<td>μ-like</td>
</tr>
<tr>
<td>HRB</td>
<td>AGFG1</td>
<td>Recruits the SNARE protein VAMP7 to AP2</td>
<td>ArgGAP</td>
</tr>
<tr>
<td>NECAP</td>
<td>NECAP1, NECAP2</td>
<td>Potential cargo-specific adaptor</td>
<td>PH</td>
</tr>
<tr>
<td>Numb</td>
<td>NUMB</td>
<td>Recruits Notch to AP2</td>
<td>PTB</td>
</tr>
<tr>
<td>β-arrestin</td>
<td>ARRB1, ARRB2</td>
<td>Recruits GPCRs to AP2 and clathrin</td>
<td>Arrestin Arrestin</td>
</tr>
</tbody>
</table>
Table 1 cont. | **Glossary of proteins involved in clathrin-mediated endocytosis**

<table>
<thead>
<tr>
<th>Protein</th>
<th>Human genes</th>
<th>Function</th>
<th>Domain architecture*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inositol 5-phosphatases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synaptojanin</td>
<td>SYN1, SYN2</td>
<td>Lipid phosphate recruited to clathrin-coated pits by AP2 and endophilin</td>
<td>SAC1 5'-phosphatase</td>
</tr>
<tr>
<td>SHIP2</td>
<td>INPP1L</td>
<td>Lipid phosphate recruited to clathrin-coated pits by intersections</td>
<td>SH2 5'-phosphatase</td>
</tr>
<tr>
<td>OCRL</td>
<td>OCRL1</td>
<td>Lipid phosphate recruited to mature clathrin-coated pits by AP2 and clathrin</td>
<td>PH 5'-phosphatase</td>
</tr>
<tr>
<td>Kinases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAK1</td>
<td>AAK1</td>
<td>Phosphorylates the μ-chain of AP2</td>
<td>Kinase</td>
</tr>
<tr>
<td>CVAK104</td>
<td>SCYL2</td>
<td>Phosphorylates the β2 subunit of AP2</td>
<td>Kinase</td>
</tr>
<tr>
<td>DYRK1A</td>
<td>DYRK1A</td>
<td>Phosphorylates several proteins involved in clathrin-mediated endocytosis</td>
<td>Kinase</td>
</tr>
<tr>
<td>Actin nucleation at clathrin-coated vesicles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIP1–HIP1R</td>
<td>HIP1, HIP1R</td>
<td>ANTH domain-containing proteins that bind clathrin, actin, AP2 (HIP1 only) and cortactin (HIP1R only)</td>
<td>ANTH</td>
</tr>
<tr>
<td>Cortactin</td>
<td>CTTN</td>
<td>Recruits actin polymerization machinery to budding clathrin-coated vesicle through dynamin and HIP1R</td>
<td>SH3</td>
</tr>
<tr>
<td>Other proteins potentially involved in clathrin-mediated endocytosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endophilin</td>
<td>SH3GL1, SH3GL2, SH3GL3</td>
<td>N-BAR domain-containing protein that bends the membrane and recruits dynamin and synaptojanin</td>
<td>N-BAR SH3</td>
</tr>
<tr>
<td>SGIP1</td>
<td>SGIP1</td>
<td>Membrane-tubulating protein containing a μ-homology domain</td>
<td>μ-like</td>
</tr>
<tr>
<td>TTP</td>
<td>SH3BP4</td>
<td>Controls TIR recruitment to clathrin-coated pits</td>
<td>SH3 SH3</td>
</tr>
</tbody>
</table>

AAK1, AP2-associated kinase 1; AGFG1, ARFGAP with FG repeats 1; ANTH, AP180 amino-terminal homology domain; AP2, adaptor protein 2; ARH, autosomal recessive hypercholesterolaemia; ASH, ASPM1–SPD2–hydin; CALM, clathrin assembly lymphoid myeloid leukaemia; CLT, clathrin light chain; CVAK104, coated vesicle associated kinase of 104 kDa; DAB2, Disabled homologue 2; DYRK1A, dual-specificity Tyr phosphorylation-regulated kinase; EH, EP55 homology; ENTH, epsin N-terminal homology domain; EPS15, EGFR pathway substrate 15; EPS15R, EPS15-related; FCHO, FCH domain only; GAK, cyclin G-associated kinase; GAP, GTPase-activating protein; GDP, GTPase effector domain; GEF, guanine nucleotide exchange factor; GPCR, G protein-coupled receptor; HIP1, huntingtin-interacting protein 1; HIP1R, HIP1-related; HSC70, heat shock cognate 70; LDLR, low-density lipoprotein receptor; N-BAR, N-BAR domain-containing GRB2-like protein; OCRL, oculocerebrorenal syndrome of Lowe; PH, pleckstrin homology; PICALM, phosphatidylinositol-binding CALM; PRD, Pro-rich domain; PTB, phosphotyrosine binding; PTEN, phosphatase and tensin homologue; PX, phox homology; SAC1, suppressor of actin; SAM, sterile α-motif; SGIP1, SH3-containing GRB2-like 3-interacting protein 1; SH, SRC homology; SHP2, SH2 domain-containing inositol phosphate 2; SNAP91, synaptosomal-associated protein 91 kDa homologue; SNX9, sorting nexin 9; TIR, transferrin receptor; TTP, TIR trafficking protein; UIMs, ubiquitin-interacting motifs; VAMP7, vesicle-associated membrane protein 7. *Clathrin-binding motifs are denoted by a red dot.

Denotes the proteins for which the structure is depicted in the domain architecture column. AP180 is the brain-specific protein, CALM is the ubiquitous one. Auxilin is the brain-specific protein, GAK is the ubiquitous one. Lipid binding module of undefined character.

required for uncoating\(^5\), but whether synaptojanin acts by facilitating auxilin recruitment\(^6\) or another mechanism is not yet clear. Uncoating releases the clathrin machinery back into the cytoplasm to be recruited and reused in another round of clathrin-coated vesicle formation.

Pathway modularity

At the heart of clathrin-coated vesicle formation is a flexible network of interactions, which can be thought of as being made up of different modules\(^4,5\). As vesicle formation progresses, a corresponding protein interaction network drives these changes (FIG. 2b). This network carries out initiation, cargo selection, membrane invagination, coat assembly, membrane scission and uncoating of the newly formed vesicle\(^4,5\).

Global modularity

Although complex, the interactions between proteins involved in clathrin-coated vesicle formation are not random and can be grouped into five modules made up of proteins interacting to carry out the five stages of clathrin vesicle formation. These protein interactions are thought to surround a hub (or organizing) protein (FIG. 2b) with its associated accessory proteins\(^5\). The transition between the five modules is probably controlled at the different stages...
Figure 2 | The clathrin-coated vesicle cycle. a | The proposed five steps of clathrin-coated vesicle formation. Nucleation: FCH domain only (FCHO) proteins bind phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)-rich zones of the plasma membrane and recruit EPS15–EPS15R (EGFR pathway substrate 15–EPS15-related) and intersectins to initiate clathrin-coated pit formation by recruiting adaptor protein 2 (AP2). Cargo selection: AP2 recruits several classes of receptors directly through its μ-subunit and σ-subunit. Cargo-specific adaptors (for example, stonin, HRB and Numb) bind to AP2 appendage domains and recruit specific receptors to the AP2 hub. Coat assembly: clathrin triskelia are recruited by the AP2 hub and polymerize in hexagons and pentagons to form the clathrin coat around the nascent pit. Scission: the GTPase dynamin is recruited at the neck of the forming vesicle by BAR domain-containing proteins, where it self-polymerizes and, upon GTP hydrolysis, induces membrane scission. The actin machinery module can be added at this stage for actin polymerization at the neck of the pit, which can aid in vesicle production (not shown). Uncoating: auxilin or cyclin G–associated kinase (GAK) recruit the ATPase heat shock cognate 70 (HSC70) to disassemble the clathrin coat and produce an endocytic vesicle containing the cargo molecules. Synaptojanin probably facilitates this by releasing adaptor proteins from the vesicle membrane through its PtdIns lipid phosphatase activity. The components of the clathrin machinery are then freed and become available for another round of clathrin-coated vesicle formation. b | The clathrin network. The protein–protein interactions underlying the different stages of vesicle progression are shown. Major hubs are obvious because of their central location in the network and the large number of interacting molecules. They are essential for pathway progression and are denoted by the central coloured circles. Possible pathways of progression between hubs are shown with thicker lines. c | Effects of depletion of different components of the clathrin machinery. Epithelial cells expressing FCHO2 tagged with red fluorescent protein (RFP), AP2 tagged on the σ2 subunit with enhanced green fluorescent protein (σ2–EGFP) and clathrin tagged with blue fluorescent protein (BFP) show arrests at each successive stage in clathrin-coated pit formation after perturbation of major hubs. FCHO2 protein depletion through RNA interference (RNAi) inhibits AP2 and clathrin recruitment to the plasma membrane and both remain diffuse and cytosolic. AP2 RNAi abrogates clathrin recruitment to the plasma membrane but not FCHO2 initial focus formation (dense red spots). Clathrin RNAi blocks maturation during cargo selection, when FCHO2 and AP2 are clustered (yellow dots, arrows). Dynamin inhibition (by dynasore) blocks clathrin-coated pits at a stage just before membrane scission (white dots, arrows). AAK, AP2–associated protein kinase 1; ARP2/3, actin-related protein 2/3; DAB2, Disabled homologue 2; HIP1R, HIP1-related; N-WASP, neural Wiskott–Aldrich syndrome protein; NECAP, adaptin ear-binding coat-associated protein; SNX9, sorting nexin 9.
of clathrin-coated vesicle formation, as vesicle formation is blocked by disruption at each respective stage (Box 3, Fig. 2c). Some modules are interchangeable; for example, AP1 or AP3 can be substituted for AP2 to form clathrin-coated vesicles from different cellular compartments (for example, endosomes and the trans-Golgi network (TGN)). Other modules have similar functions in the various pathways; for example, the clathrin module can be used in vesicle budding from other cellular compartments, and the dynamin module can be used in many different vesicle scission events. The specificity or efficiency of vesicle formation can be changed by adding accessory modules to the core modules, without compromising the production of vesicles. For example, alternative adaptor proteins can be added at the plasma membrane that provide cargo specificity (such as autosomal recessive hypercholesterolemia (ARH), Numb, stonin, HRB and β-arrestin), or connections to the actin machinery can be activated to aid vesicle budding. These modules are accessory, as they show differential representation in different species (discussed below) and variable distribution in different cell types, or even within an individual cell.

Global regulation of endocytosis through phosphorylation is well characterized in synapses (see below), where the initiation of clathrin-mediated endocytosis is
Inhibiting clathrin-mediated endocytosis

Traditionally, clathrin-mediated endocytosis has been inhibited by the use of monodansylcadaverine (MDC)22, potassium depletion23, phenylarsine oxide (PAO)14, cystolic acidification14, hyperosmotic shock (sucrose)15 or chlorpromazine12. However, because of their pleiotropic effects, the overexpression of protein interaction domains taken from endocytic proteins (for example, the carboxyl terminus of adaptor protein 180 (AP180)16 or EGFR pathway substrate 15 (EPS15) with deletions of the second and the third EPS15 homology (EH) domains (EPS15175579)17) has become a method of choice, although these may not be specific either if they titrate out components that are used in other trafficking pathways, such as clathrin (see BOX 1). Thus, for specificity, it is advisable to target interaction domains that are specific for nucleation and clathrin-coated pit formation (FIG. 2). Overexpression of the C-terminal-tagged FCH domain only (FCHO) protein would be a good specific inhibitor for clathrin-mediated endocytosis. Another popular method is RNA interference (RNAi) of clathrin heavy chain and of the α-subunit or μ2-subunit of AP2. Different considerations need to be taken when using the two approaches. When using RNAi, one should delete a hub (FCHO proteins19 or the α-subunit or μ2-subunit of AP2 (REFS 26,27)) rather than an accessory protein, as these are central organizing components. By contrast, overexpression of accessory proteins may be better in overexpression studies, as it is easy to distort the network by pulling it towards a non-functional point. For an overexpression strategy to work on hubs (which tend to be virtual polymers) one needs to make sure that the inhibitory domain is incorporated into the polymer. Both approaches require transfection and a long incubation period (>16 hours (mutant); 48–72 hours (RNAi)) to be efficient and to produce a steady-state effect, and during this time compensatory events may occur.

Strategies using small molecule inhibitors and protein complementation are in development to acutely perturb the pathway. Acute inhibitors of dynamin61,143,148 exist and are already widely used, although precautions are required as dynamin functions in development to acutely perturb the pathway. Acute inhibitors of dynamin offer additional functionality in the form of energy for vesicle budding. Other tissue, such as the liver, have cargo adaptor proteins, such as ARH, that bind to LDLR to allow its incorporation into clathrin-coated vesicles. Furthermore, different accessory adaptor proteins can be expressed in different tissues, thus allowing a whole range of proteins to be recruited into a clathrin-coated vesicle. In addition to conferring specificity, the presence of distinct cargo adaptor proteins ensures that, when one receptor (for example, TIR) is present in high levels on the membrane, this does not block the uptake of non-cognate cargo (in this case, EGF or LDL62,63). Therefore, even if a receptor is present on the membrane with low representation, it can still be endocytosed.

Functional perturbation (mutations or decreased expression) of a cargo-specific adaptor protein is sufficient to specifically decrease the cellular uptake of its cognate receptor without affecting the formation of clathrin-coated vesicles and the internalization of other cargoes. For example, perturbation of the adaptor protein ARH specifically affects the recruitment of LDLRs to clathrin-coated pits64,65. Consistently, increased expression of cargo-specific adaptor proteins increases the internalization of their cognate receptors and cargoes65,66, and some cargo-specific effects on clathrin-mediated endocytosis have been reported upon overexpression of artificial chimeric receptors65,67. It therefore seems that cargo-specific adaptor proteins work like add-on modules, giving extra functionality that is adapted to the respective cellular need. It is possible that artificial manipulation of cargo-specific adaptor proteins could potentially be used for increasing targeted drug delivery for specific diseases.

Modularity in actin recruitment. Actin is not necessary for the endocytosis of transferrin (the classical ligand used to study clathrin-mediated endocytosis) by clathrin-mediated endocytosis in several cell types68,69, and its disruption does not inhibit early hub progression. Therefore, it is not regarded as a core component of the network. In the situations in which actin is reported to function, it is a late component that is recruited close to the time of membrane scission46; thus, it is likely to help in the budding of some vesicle types. Actin joins the clathrin network following the recruitment of the actin-nucleating complex actin-related protein 2/3 (ARP2/3) to the budding vesicle. This can be mediated by cortactin or by neural Wiskott–Aldrich syndrome protein (N-WASP), which

SNARE proteins
(Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor proteins). Members of a family of membrane-tethered coiled-coil proteins that regulate fusion reactions and target specificity. On the basis of their localization, they can be divided into vesicle membrane SNAREs (v-SNAREs) and target membrane SNAREs (t-SNAREs).

C protein-coupled receptors (GPCRs; also known as seven transmembrane domain receptors). The largest family of cell surface receptors (>800 members) that sense molecules outside the cell and activate signal transduction pathways.

<table>
<thead>
<tr>
<th>Box 3</th>
<th>Inhibiting clathrin-mediated endocytosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditionally, clathrin-mediated endocytosis has been inhibited by the use of monodansylcadaverine (MDC)22, potassium depletion23, phenylarsine oxide (PAO)14, cystolic acidification14, hyperosmotic shock (sucrose)15 or chlorpromazine12. However, because of their pleiotropic effects, the overexpression of protein interaction domains taken from endocytic proteins (for example, the carboxyl terminus of adaptor protein 180 (AP180)16 or EGFR pathway substrate 15 (EPS15) with deletions of the second and the third EPS15 homology (EH) domains (EPS15175579)17) has become a method of choice, although these may not be specific either if they titrate out components that are used in other trafficking pathways, such as clathrin (see BOX 1). Thus, for specificity, it is advisable to target interaction domains that are specific for nucleation and clathrin-coated pit formation (FIG. 2). Overexpression of the C-terminal-tagged FCH domain only (FCHO) protein would be a good specific inhibitor for clathrin-mediated endocytosis. Another popular method is RNA interference (RNAi) of clathrin heavy chain and of the α-subunit or μ2-subunit of AP2. Different considerations need to be taken when using the two approaches. When using RNAi, one should delete a hub (FCHO proteins19 or the α-subunit or μ2-subunit of AP2 (REFS 26,27)) rather than an accessory protein, as these are central organizing components. By contrast, overexpression of accessory proteins may be better in overexpression studies, as it is easy to distort the network by pulling it towards a non-functional point. For an overexpression strategy to work on hubs (which tend to be virtual polymers) one needs to make sure that the inhibitory domain is incorporated into the polymer. Both approaches require transfection and a long incubation period (>16 hours (mutant); 48–72 hours (RNAi)) to be efficient and to produce a steady-state effect, and during this time compensatory events may occur.</td>
<td></td>
</tr>
</tbody>
</table>
for clathrin-mediated endocytosis in yeast, as yeast cells have a rigid wall and an internal pressure against which a higher force has to be applied to invaginate the membrane compared with mammalian cells. It will be interesting to assess the role of actin in clathrin-coated vesicle formation in plants, as they also have a rigid wall and a high internal pressure. Actin polymerization is also required during uptake of large cargoes, such as viruses and bacteria, in mammalian cells (see below). In this case, the clathrin lattice may serve as a signalling platform for actin polymerization, which may thus make it indispensable for cellular entry of these very large cargoes.

Species variation

The clathrin heavy chain is conserved across all eukaryotic genomes, and clathrin-coated vesicles have been observed or isolated from many unicellular and multicellular eukaryotes. However, differences between species have been observed, such as the dependency of endocytosis on clathrin, adaptors and actin, and the kind of ligand internalized.

The size of clathrin-coated pits varies. When clathrin-coated pits from different species are observed to scale, they seem to differ widely in size (Fig. 3a). The size of clathrin-coated vesicles depends on the size of its cargo, with an observed upper limit of about 200 nm external diameter, as in the case of virus uptake. Larger cargoes, such as latex beads (mimicking phagocytosis) and bacteria, do not seem to be taken within single clathrin-coated vesicles (Fig. 3b). Yeasts (for example, Saccharomyces cerevisiae) and plants (for example, Arabidopsis thaliana) have very small coated pits of ~35–60 nm in diameter (the outer diameter comprising the coat), which is considerably smaller than the ones found in mouse fibroblasts or chicken oocytes (which are ~150 nm in diameter). This may be because plant cells and yeasts have rigid walls, so having to counteract the internal pressure to deform the plasma membrane might limit the size of the clathrin-coated pits. Brain-derived clathrin-coated vesicles have external diameters of ~70–90 nm, with the internal vesicles having diameters of ~34–42 nm. Thus, the fact that the clathrin-coated vesicles in yeasts and plants have diameters of ~35–60 nm indicates that their internal vesicles would measure ~15–25 nm in diameter; this is probably too small to package large cargoes or a large number of small cargoes. Indeed, human LDL bound to its receptor has a diameter of 25 nm (Fig. 3c) and would not fit into a yeast or a plant clathrin-coated pit. TR and EGFR bound to their cognate cargoes occupy diameters of 11 nm and 13 nm, respectively, and could not be loaded at more than one or two copies at a time into such small clathrin-coated pits (Fig. 3c). Only very small receptors, such as GPCRs, which have much smaller luminal occupancy (~4 nm in diameter), could fit into yeast or plant clathrin-coated pits, but the internalization of such receptors functions in signal transduction regulation and not in ligand uptake. This indicates that the primary role of clathrin-mediated endocytosis may not be internalization of extracellular ligands in yeast and plants (see below for other arguments).

The size of clathrin-coated pits also varies between different cell types within the same species. For example, clathrin-coated pits in rat and mouse brains are ~70–90 nm in diameter, which is also comparable to the pit size in lamprey synapses. However, they are significantly smaller that those generally observed in mouse or human epithelial cells, which are ~120–150 nm in diameter. This may be because the brain vesicles do not internalize large extracellular cargo but simply retrieve the synaptic vesicle components.

Clathrin-mediated endocytosis is not essential in single-cell organisms. Clathrin perturbations are lethal in multicellular organisms, such as Drosophila melanogaster, Caenorhabditis elegans and Mus musculus. However, unicellular organisms, such as yeasts, amoebae (for example, Dictyostelium discoideum during its vegetative state) and protozoa (for example, Trypanosoma brucei), are viable but weak following clathrin ablation, and their main defects seem to come from inhibition of intracellular trafficking (such as from the Golgi to the vacuole) instead of endocytic defects. Consistent with this, the core components of clathrin-mediated endocytosis (AP2, intersectin, EPS15–EPS15-related (EPS15R), dynamin, synaptojanin and auxilin) are also either not essential or do not have homologues in unicellular organisms, whereas in higher eukaryotes knockouts of individual cargo-specific adaptor proteins or accessory proteins, such as stonin, Disabled homologue 2 (DAB2) or AP180, have mild to severe phenotypes but all are still capable of endocytosis. This suggests that these proteins serve more specialized functions in higher eukaryotes, highlighting the importance of maintaining clathrin-mediated endocytosis in higher organisms.

Clathrin might function in receptor-mediated endocytosis only in higher organisms. Clathrin mutations in unicellular organisms, such as protozoa and amoebae, block GPI-anchored protein and global plasma membrane turnover as well as fluid-phase uptake, processes that are largely independent of clathrin in higher organisms. Consistent with this, only a few receptors have been shown to enter cells through clathrin- and actin-mediated endocytosis, and none of these seems to be totally dependent on clathrin. For example, clathrin mutants still internalize ligands, and their receptor, Ste2, albeit at slower rates (~40–60%) than wild-type cells. By contrast, in metazoans many receptors (for example TIR and LDLR) are highly (>80%) dependent on clathrin-mediated endocytosis to enter cells. It is important to note that differences in the assays used in yeast and mammalian cells might influence the previously
REVIEWS

a

<table>
<thead>
<tr>
<th>S. cerevisiae</th>
<th>A. thaliana</th>
<th>Lamprey synapse</th>
<th>Mouse fibroblast</th>
<th>Chicken oocyte</th>
<th>Semliki forest virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 nm</td>
<td>60 nm</td>
<td>84 nm</td>
<td>153 nm</td>
<td>165 nm</td>
<td>178 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 nm</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 nm</td>
</tr>
</tbody>
</table>

b

- Latex bead: 142 nm
- L. monocytogenes: 63 nm

c

S. cerevisiae

- Constitutive pathway
- Stimulated pathway

d

- Neurotransmitter uptake
- Docking, priming
- Fusion, exocytosis
- AP2, accessory adaptors
- Translocation
- Clathrin
- Neurotransmitter influx
- Synaptic vesicle components
- Postsynaptic neuron
Constitutive and stimulated internalization of receptors. The first described physiological function of clathrin-mediated endocytosis was to selectively internalize receptors carrying metabolites such as cholesterol or iron103,104. In metazoans, several receptor types are endocytosed constitutively (that is, with or without ligands bound) from the plasma membrane to endosomes, and a major portion of these is recycled back to the plasma membrane within minutes (FIG. 3c). TIR is the classic example of such a receptor and is used in many studies to assess clathrin-mediated endocytic activity, as its trafficking relies mainly on this pathway26,103. LDLR is also reported to traffic constitutively through clathrin-mediated endocytosis103. Many receptors, including receptor Tyr kinases (RTKs) (such as EGFR) and GPCRs (for example, β2 adrenergic receptor), undergo stimulated, or ligand-induced, endocytosis (FIG. 3c). Binding of the cognate ligands induces dimerization (in the case of RTKs) or a change in conformation (in the case of GPCRs) of the receptors, and this is necessary for their recruitment by adaptors to clathrin-coated pits. Once internalized, receptors are either freed from their ligands and recycled back to the cell surface or sorted to lysosomes for degradation (FIG. 3c). All of these receptors rely on AP2 for recruitment to clathrin-coated pits, either directly (as with TIR79,80 and EGFR103) or through cargo-specific adaptor proteins (as with LDLR, which requires DAB2 and ARH79, and β2 adrenergic receptor, which requires β-arrestin85).

Signal transduction regulation. By influencing the surface protein composition of cells, clathrin-mediated endocytosis controls receptor signalling, responses to channel activation and transporter activity. Clathrin-mediated endocytosis controls the activity of many RTKs (for example, EGFR and insulin receptors) and GPCRs (for example, β2 adrenergic receptor and Frizzled), as well as the activity of synapses and of transporters (for example, amine and auxin transporters)106–109. The signalling pathways involved have wide consequences for major cellular functions, ranging from cell growth, division and differentiation to synaptic transmission, development, chemotaxis and immune responses (reviewed in REFs 106–109). The classical function of clathrin-mediated endocytosis in the regulation of signal transduction is to terminate the signal by physically removing activated receptors from the cell surface90,103. The internalization of ligand–receptor complexes into endosomes and then lysosomes may lead to their degradation, which results in termination of signalling (FIG. 3c). For example, upon activation by WNT ligands, Frizzled is internalized in an AP2-dependent manner15, leading to its degradation, and perturbation of this process induces aberrant embryonic development15.

However, by promoting the internalization of ligand-bound receptors to endosomes, which can serve as internal signalling platforms, clathrin-mediated endocytosis also activates or amplifies signalling106,108. Moreover, under conditions of low ligand concentrations of some RTKs, such as EGFR, clathrin-mediated endocytosis directs the receptors to the endosomal recycling pathway, which allows sustained signalling by

Physiological functions

The cellular uptake of plasma membrane receptor proteins mediated by clathrin is implicated in many key cellular functions. Clathrin-mediated endocytosis controls constitutive and stimulated internalization of many receptors with roles in cellular homeostasis, growth control, cell differentiation and synaptic transmission. The pathway is also exploited by toxins, viruses and bacteria to gain entry into cells.
trafficking the receptors back to the cell surface98,106,110 (FIG. 3c). When the capacity of clathrin-mediated endocytosis is exceeded, clathrin-independent pathways take over and route most of the receptor population for degradation106,110.

Synaptic vesicle recycling. Synapses are at the core of integration and communication between different areas of the brain, where electrical signals converge to be converted into chemical signals that are transmitted to surrounding neurons. Chemical signals in the form of neurotransmitters are packaged into vesicles for Ca2+-dependent exocytosis111. Very active pre-synaptic terminals can contain thousands of vesicles, and there is a need for efficient and local recycling of synaptic vesicle components following exocytosis112 (FIG. 5d) for successive rounds of signal transmission.

Clathrin-mediated endocytosis is essential for synaptic vesicle recycling and has an integral role in regulating the size11 and composition of synaptic vesicles2,12. The importance of clathrin-mediated endocytosis is highlighted by the synaptic phenotypes of \textit{C. elegans} and \textit{D. melanogaster} that are mutated for components of this pathway76,111, from studies in which clathrin-mediated endocytosis is perturbed114,115 and from the abundance of clathrin–AP2-coated vesicles in brain tissue extracts116. The high concentration of clathrin components in the brain compared with other tissues, as well as the presence of brain-specific isoforms of adaptor proteins (AP180, epsin 1, amphiphysin 1 and dynamin 1) and additional splice forms (usually longer splice variants, for example, of EPS15 and amphiphysin 2) is likely to be related to the more specialized use of clathrin–mediated endocytosis in synapses. Phosphorylation is thought to have an important role in regulating clathrin components in synapses and may even be a mechanistic requirement for endocytosis in secretory cells. Indeed, clathrin components are dephosphorylated upon calcium entry96,117, a process that is tightly coupled to vesicle exocytosis and vesicle endocytosis118,119. For endocytic proteins, dephosphorylation in general leads to enhanced protein–protein interactions, promoting endocytosis.

It is often assumed that clathrin-mediated endocytosis in synapses is faster than in other cell types. However, there are two complications here. First, in synapses one cannot readily follow clathrin as a marker for individual events. Therefore, results in synapses are based on population analyses (which may include many different pathways, some of which might be clathrin independent). Second, the time constant for the slow component of endocytosis is not inconsistent with the values for clathrin arrival and disappearance in non-neuronal cells (epithelial cells or fibroblasts), although it is slightly faster16,126. However, clathrin-coated vesicles observed in synapses are significantly smaller than other vesicles (FIG. 5a, lamprey synapse) and thus probably take less time to form. In synapses, clathrin-mediated endocytosis is especially coupled to the exocytic stimulus and is therefore specifically tailored to the recycling of synaptic vesicle components (for example, SNAREs and neurotransmitter transporters) rather than to the uptake of ligands.

Exploitation by toxins, viruses and bacteria. Clathrin-mediated endocytosis can be exploited by pathogens, such as toxins, bacteria and viruses. Bacterial toxins can easily be accommodated in clathrin-coated vesicles owing to their small size; for example, anthrax, one of the larger toxins entering through clathrin-mediated endocytosis, is ~25 nm × 10 nm, which is roughly the size of an LDL particle in complex with its receptor. Botulinum toxin B enters synapses by binding to synaptotagmin121, a cargo for clathrin-mediated endocytosis17 that is exposed on the cell surface after synaptic vesicle exocytosis. Although tetanus, shiga, diphtheria and anthrax toxins can use clathrin-mediated endocytosis to enter cells122–125, most of them can also enter cells using other, clathrin-independent pathways126–129. For example, the entry of anthrax toxin does not depend on the core clathrin components, AP2 and EPS15 (REF. 130), which is indicative of a clathrin-independent entry route. In fact, the evidence for a clathrin–AP1 endocytic route for anthrax uptake126 might be the result of a potential decrease in the levels of anthrax receptor on the plasma membrane as a consequence of perturbation of Golgi export or endosome recycling. These effects may have induced by RNA interference of clathrin or AP1 (REFS 131,132).

Bigger cargoes, such as viruses, may require a larger vesicle or may need to change the normal geometry of clathrin-coated vesicle. As an indication, transferrin bound to its receptor has a diameter of ~13 nm (FIG. 3c), and one LDL particle has a diameter of ~25 nm103, these cargoes can easily be accommodated in clathrin-coated vesicles with average internal diameters of ~35–42 nm106,108,110 without changing their normal geometry. However, among the viruses that are known to enter cells using clathrin-mediated endocytosis, only small viruses, such as rhinovirus or Semliki forest virus have a size (~30 nm in diameter) and shape (spherical) that can fit a clathrin-coated vesicle without altering its formation. Nevertheless, larger spherical viruses, such as reovirus (~85 nm in diameter) and influenza A (~120 nm in diameter) are taken up into clathrin-coated vesicles that must increase their size to accommodate the cargo94,133. By contrast, the non-spherical (70 nm × 70 nm × 200 nm ‘bulet-shaped’) vesicular somatitidis virus (VSV) enters cells through endocytic carriers that are composed of a partial clathrin coat around the tip of the virus and require local actin assembly to complete internalization86. It is the non-spherical shape of the cargo (combined with its large size) that physically hampers the closure of the clathrin coat and triggers the engagement of the actin machinery, as a 75-nm-diameter spherical mutant of VSV is internalized into classical clathrin-coated vesicles in the absence of the actin machinery134. Similar actin-dependent internalization of large (up to 1 μm diameter) clathrin planar structures that are not clathrin-coated vesicles was reported at the bottom surface of adherent cells82, perhaps reminiscent of the processes mediating some focal adhesion or tight junction internalizations132,135.

Bacteria and fungi are even larger than viruses, but some (for example, \textit{Listeria monocytogenes}, \textit{Staphylococcus aureus}, \textit{Yersinia pestis}, uropathogenic \textit{Escherichia coli} (UPEC) and \textit{Candida albicans}) recruit

Neurotransmitters

Endogenous molecules that transmit signals from a neuron to a target cell across a synapse.

Exocytosis

The process by which the content of secretory vesicles (such as a synaptic vesicle) is released out of the cell.
clathrin to their sites of entry and depend on clathrin for endocytosis131,136–138. These pathogens frequently bind receptors that are known to be internalized in a clathrin-dependent manner. However, considering the size of bacteria (~0.5 μm × 0.5 μm × 0.5–2 μm), it is very unlikely that even their tip can be coated in a clathrin coat in a similar way to VSV. This is consistent with the absence, so far, of electron micrographs showing a clathrin lattice surrounding sites of bacterial entry. However, it should be noted that several clathrin-coated pits can be observed on the surface of cells underneath latex beads (a model system for studying pathogen phagocytosis) and underneath \textit{L. monocytogenes} (FIG. 5b); the creation of these pits might be caused by the clustering of cellular receptors that is induced by these very large cargoes.

Unlike for UPEC and \textit{C. albicans}, AP2 is not required for the entry of \textit{L. monocytogenes}38. Instead, PtdIns(4)P (which is present at the TGN) and AP1 (the TGN-localized clathrin adaptor protein) are both detected at the site of \textit{L. monocytogenes} entry, and AP1 is required for the internalization of bacteria139. This suggests an alternative mode of clathrin recruitment (and perhaps function) to that used during clathrin-mediated endocytosis (which is totally dependent on AP2) (BOX 1). It is possible that clathrin forms a flat array at the site of pathogen entry (as it does on endosomes131) and serves as a signalling platform for actin polymerization, which may thus make it indispensable for cellular entry of these very large cargoes. Alternatively, clathrin might be brought to this site on AP1-positive vesicles derived from the TGN and fuse at sites of \textit{L. monocytogenes} entry, as has been proposed to happen during Fc receptor-mediated phagocytosis140.

\section*{Involvement in human diseases}

The loss of function of any of the central components of clathrin-mediated endocytosis — clathrin, AP2, epsin and dynamin — results in embryonic lethality141,142. As a result, severe mutations of key players are not expected in human diseases. Nonetheless, several perturbations of clathrin-mediated endocytosis proteins have been reported in numerous human disorders, such as cancer, myopathies, neuropathies, metabolic and genetic syndromes, and psychiatric and neurodegenerative diseases (see Supplementary information S1 (table)).

\subsection*{Cancer}

Many proteins involved in clathrin-mediated endocytosis have been reported to be perturbed in human cancers (see Supplementary information S1 (table)). Translocations and fusions of genes coding for clathrin components (such as clathrin heavy chain, clathrin assembly lymphoid myeloid leukaemia (CALM), endophilin, EPS15 and huntingtin-interacting protein 1 (HIP1)) with transcription factors or kinases in lymphomas, myelomas, and psychiatric and neurodegenerative diseases. This suggests an alternative mode of clathrin recruitment (and perhaps function) to that used during clathrin-mediated endocytosis (which is totally dependent on AP2) (BOX 1). It is possible that clathrin forms a flat array at the site of pathogen entry (as it does on endosomes131) and serves as a signalling platform for actin polymerization, which may thus make it indispensable for cellular entry of these very large cargoes. Alternatively, clathrin might be brought to this site on AP1-positive vesicles derived from the TGN and fuse at sites of \textit{L. monocytogenes} entry, as has been proposed to happen during Fc receptor-mediated phagocytosis140.

\subsection*{Myopathy, neuropathy, psychiatric and neurodegenerative diseases}

Mutations in amphiphysin and dynamin have been reported in forms of myopathy (for example, centronuclear myopathy) and neuropathy (for example, Charcot–Marie–Tooth disease)151–153. The link between the consequences of the mutations and the development of the disease is still unclear. In addition, it is possible that these mutations do not affect clathrin-mediated endocytosis, as dynamin functions in clathrin-independent endocytic pathways (BOX 1) and the amphiphysin isoform used in muscle tissue does not bind to clathrin or AP2 and is required for muscle structure148. Mutations, single nucleotide polymorphisms and altered expression of several genes encoding clathrin-mediated endocytosis proteins have been reported in patients with psychiatric disorders (such as bipolar disorder and schizophrenia) and neurodegenerative disorders (for example, Alzheimer’s disease) (see Supplementary information S1 (table)), but no direct links between the gene perturbations and disease onset or development have been firmly established.

\subsection*{Metabolic and genetic syndromes}

Mutations in the cargo-specific adaptor protein ARH and in SH2 domain-containing inositol phosphatase 2 (SHIP2) have been reported in autosomal recessive hypercholesterolaemia and type 2 diabetes, respectively58,155. In the case of ARH, the mutations have been established to cause
the disease by disrupting its role as an LDLR-specific clathrin adaptor protein. Furthermore, the genes encoding synaptojanin 1, intersectin 1 and dual-specificity Tyr-phosphorylation-regulated kinase 1 (DYRK1A), which are located on chromosome 21, are duplicated in patients with Down's syndrome. The predicted increased expression of these genes has been confirmed, but the contribution of the protein overexpression in the syndrome's pathology remains uncertain.

Conclusion and perspectives
Although the importance of clathrin-mediated endocytosis is unchallenged, its role in various physiological responses remains largely unclear. The precise role of clathrin-mediated endocytosis in signal transduction has yet to be fully understood. For example, how does receptor endocytosis lead to the activation of signalling pathways, and how does clathrin-mediated endocytosis induce this? A better understanding is required of the initial steps in signal transduction and of the accessory modules that are associated with clathrin-mediated endocytosis. Perhaps the next stage of understanding of the pathway should indeed focus generally on accessory modules. This will be facilitated by the advent of better inhibitors and a more complete understanding of mechanistic details of the pathway.

The recent development of new technologies, such as gene editing and super-resolution live-cell imaging, opens the exciting perspective of studying the endogenous proteins involved in clathrin-coated vesicle formation with unprecedented spatiotemporal resolution.

Many proteins are assumed to be involved in clathrin-mediated endocytosis just by virtue of binding to some of the clathrin components or because they localize to clathrin-coated pits. However, in many cases there is limited or no mechanistic detail supporting their involvement. Given the expanding variety of alternative endocytic pathways, it may well be that some of these associations are imprecise and they may act in different pathways.

Although the core components of clathrin-mediated endocytosis are not mutated in many diseases, there is evidence that mutation of accessory components may have a role in some diseases and in disease progression. Given that late-onset diseases often seem to be responsive to environmental cues, which in turn are responsive to the surface receptor composition of cells, it is likely that manipulations of this pathway will have a significant role in their progression. For example, because disease proteins pass from cell to cell during the progression of aggregation diseases, such as Alzheimer's disease or Huntington's disease, upregulation of clathrin-mediated endocytosis may promote the degradation of unwanted material by the cell before it is transmitted. Thus, there should be some focus on how to specifically upregulate the pathway, and how to target unwanted material in this direction.
The first evidence of the mechanoenzymatic activity of dynamin was the demonstration that dynamin in mammalian cells promotes coated vesicle budding from the plasma membrane. This effect was later shown to be due to the specific binding of dynamin to clathrin-coated vesicles. Dynamin is a guanosine triphosphatase (GTPase) that hydrolyzes GTP, suggesting a molecular switch mechanism for vesicle budding. The role of dynamin in coated vesicle budding is best understood by the discovery of dynamin inhibitors, such as Dynasore, which are specific to dynamin and prevent vesicle budding.

Intracellular vesicle budding is a key step in the endocytosis process, which is essential for the uptake of nutrients and the removal of waste products. Dynamin is involved in the budding of endocytic vesicles from the plasma membrane and is also required for the formation of intracellular vesicles, such as endosomes and lysosomes.

The role of dynamin in vesicle budding is well established, but the precise mechanism by which dynamin promotes vesicle budding remains to be fully elucidated. Recent studies have suggested that dynamin may act through a variety of mechanisms, including the regulation of actin assembly, the stabilization of the clathrin lattice, and the promotion of membrane fission.

The discovery of dynamin as a key player in vesicle budding has revolutionized our understanding of the mechanisms underlying vesicle budding and has opened up new avenues for the development of targeted therapies for various diseases, such as cancer and neurological disorders.
References 26, 27 and 102 show that AP2 is crucial for clathrin-coated pit formation and internalization of transferrin (REF. 26), EGF (REF. 102) and LDLRs (REF. 27). Upon depletion of AP2, there is a reduction in the number of clathrin-coated pits forming (REF. 26), with the remaining pits still containing AP2.

A seminal study establishing receptor-mediated endocytosis of LDL by clathrin-coated pits.

Highlights the importance of membrane curvature in the function of synaptojanin.

Acknowledgements
We thank M. Robinson and R. Mittal for critical reading of the manuscript. H.T.M. and E.B. are supported by the Medical Research Council, UK.

Competing interests statement
The authors declare no competing financial interests.

FURTHER INFORMATION
Harvey T. McMahon’s homepage: http://www.endocytosis.org

SUPPLEMENTARY INFORMATION
See online article: S1 (table)

ALL LINKS ARE ACTIVE IN THE ONLINE PDF