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Apoptotic cell disassembly is a highly
complex process regulated by a series
of well-coordinated morphological
steps including apoptotic membrane
blebbing, apoptotic protrusion forma-
tion, and fragmentation.

Plasma-membrane blebbing is not the
sole process required for apoptotic
body (ApoBD) formation, but mem-
brane protrusions including microtu-
bule spikes, apoptopodia, and
beaded apoptopodia may act in con-
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apoptotic bodies (ApoBDs), is a hallmark of apoptosis. Although the genera-
tion of ApoBDs is generally understood as being stochastic, it is becoming
increasingly clear that ApoBD formation is a highly regulated process involv-
ing distinct morphological steps and molecular factors. Functionally, ApoBDs
could facilitate the efficient clearance of apoptotic material by surrounding
phagocytes as well as mediate the transfer of biomolecules including micro-
RNAs and proteins between cells to aid in intercellular communications.
Therefore, the formation of ApoBDs is an important process downstream
from apoptotic cell death. We discuss here the mechanisms and functions
of apoptotic cell disassembly.
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Cell Disassembly as a Key Downstream Process of Apoptotic Cell Death
Billions of cells undergo apoptosis (a form of programmed cell death) daily as part of
physiological homeostasis [1]. At later stages of apoptosis, some cell types can generate
subcellular (1–5 mm) membrane-bound extracellular vesicles termed apoptotic bodies
(ApoBDs, see Glossary) [1–3]. ApoBDs are the largest type of extracellular vesicle compared
to microparticles (50–1000 nm) and exosomes (30–100 nm) [2,4–6] (Box 1). The formation of
ApoBDs involves a series of morphological changes through a process termed apoptotic cell
disassembly [1] (Figure 1). It has been well documented that a key mediator of apoptotic
cell disassembly is plasma-membrane blebbing, a process controlled by actomyosin
contraction [7]. The subsequent separation of plasma-membrane blebs to generate discrete
ApoBDs is dependent on the formation of thin membrane protrusions [1,8,9]. Although the
importance of apoptosis and the prompt removal of apoptotic cells in normal physiological
and disease settings have been extensively studied [10,11], the function of apoptotic cell
disassembly (i.e., the intermediate step between apoptosis and cell removal) is not fully
defined. Nevertheless, the disassembly of apoptotic cells can facilitate efficient cell clearance
[12] and mediate the transport of biomolecules between cells to aid in intercellular communi-
cation [13,14].

Because most investigators focus on the level of cell death rather than on the cell disassembly
process, and because the clearance of apoptotic material by phagocytes is extremely rapid,
in vivo evidence of ApoBD formation is limited. Nonetheless, several studies have observed
the ability of apoptotic cells to disassemble into ApoBDs under in vivo settings, including the
generation of thymocyte-derived ApoBDs [9,15] and the formation and subsequent removal
of epithelial cell-derived ApoBDs in the basal epithelium [16] (Table 1). These studies support
the concept that ApoBD formation can occur in vivo under physiological conditions and is not
simply an in vitro phenomenon when neighbouring phagocytes and tissue architecture are
absent. We review here the current mechanistic insights into the complex steps of apoptotic
cell disassembly, and the significance of this process in physiological and pathological
settings.
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Glossary
Actomyosin contraction: a cellular
process that describes the
generation of contractile force though
the interaction between filamentous
actin and myosin II.
Apoptotic body (ApoBD): a
subcellular (1–5 mm diameter)
extracellular vesicle generated from
an apoptotic cell at the final stages of
apoptotic cell disassembly.
Apoptotic cell: a cell that has begun
apoptosis but has not undergone
apoptotic cell disassembly.
Apoptopodia: string-like membrane
protrusions found on apoptotic cells.
Beaded apoptopodia: beads-on-a-
string-like membrane protrusions
found on apoptotic cells.
Blebbing: a cellular process that
describes the formation and
retraction of plasma-membrane
bulges at the cell periphery.
Cell body: the largest membrane-
bound portion of an apoptotic cell
generated at the final stages of
apoptotic cell disassembly; often
contains the majority of the nuclear
and cytoplasmic contents.
Early-stage membrane blebbing:
the formation of small membrane
blebs at the cell periphery.
‘Eat-me’ signals: molecular factors
exposed on the surface of dying cells
that could trigger their uptake by
phagocytes.
‘Find-me’ signals: molecular factors
released from dying cells that could
recruit phagocytes towards the site
of cell death.
Late-stage apoptotic membrane
blebbing: the formation of dynamic
and large membrane blebs after
early-stage blebbing. Blebs at this
stage often contain nuclear materials.
Microtubule spikes: rigid and
microtubule-rich membrane
protrusions found on apoptotic cells.

Box 1. Comparison of the Three Major Classes of Membrane-Bound Extracellular Vesicles

Apoptotic Bodies (ApoBDs)

ApoBDs (1–5 mm) are the largest type of vesicle in the extracellular vesicle family. Their formation is regulated by the
morphological steps of apoptotic cell disassembly, controlled by protein kinases such as ROCK1 [20] and MLCK [7], the
membrane channel PANX1, and vesicular transport [1]. The formation of ApoBDs can promote efficient removal of cell
debris by surrounding phagocytes. In addition, ApoBDs can harbour biomolecules including microRNA [13] and DNA
[14] to regulate intercellular communication. Currently, the only known surface marker of ApoBDs is PtdSer [1].

Microparticles (MPs)

MPs (50–1000 nm) are generated through budding or shedding from the plasma membrane under healthy and apoptotic
conditions. The release of MPs is facilitated by spectrin, calpain, and Ca2+ stimulation [4], and can regulate processes
including coagulation, inflammation, and cell activation [5]. Therefore, MPs are often implicated in the pathogenesis of
particular disease settings including thrombosis and arthritis, and are often considered to be a biomarker for diseases
such as atherosclerosis [5]. Characteristic markers of MPs include PtdSer exposure, integrins, VCAMP3, and CD40 [2].

Exosomes

These are the smallest (30–100 nm) and the best-characterised vesicle in the extracellular vesicle family. Exosome
biogenesis is mediated by ESCRT, Rab, and SNARE proteins [2]. When observed by electron microscopy, exosomes
have a distinct cup-shaped morphology. In addition, exosomes can be characterised based on enriched protein content
including ALIX, TSG101, and CD9. Owing to their density, exosomes can be purified by various centrifugation
techniques. Exosomes are involved in an array of biological processes including protein secretion, antigen presentation,
and viral pathogenesis [6].
Molecular Mechanisms of Apoptotic Cell Disassembly
The dismantling of an apoptotic cell into ApoBDs has been thought to be a stochastic process.
However, recent studies suggest that the generation of ApoBDs is controlled by several well-
coordinated morphological steps. The apoptotic cell disassembly process can be divided into
three sequential steps governed by distinct morphological changes [1] (Figure 1). Step 1
describes the formation of plasma-membrane blebs on the cell surface. Particular cell types
can then generate thin membrane protrusions (Step 2) including microtubule spikes (Step 2a),
apoptopodia (Step 2b), and beaded apoptopodia (Step 2c). Lastly, the fragmentation
process (Step 3) leads to the generation of individual ApoBDs.

Step 1. Apoptotic Membrane Blebbing
In healthy cells, plasma-membrane blebbing plays a key role in directed cell migration [17].
Plasma-membrane blebbing is also a morphological hallmark of apoptosis in vitro and in vivo
[7,15,18]. Apoptotic membrane blebbing (Step 1) constitutes the dynamic formation and
retraction of plasma-membrane blebs at the cell surface during the early stages of apoptosis
and is regulated by a series of processes (Figure 2). Hydrostatic pressure within the dying cell
can facilitate the movement of intracellular fluids into membrane blebs and enable bleb inflation
[19]. Simultaneously, actomyosin contraction and microtubule assembly regulate cytoskeletal
dynamics to aid in the cyclic extension of blebs at the cell surface [8,20]. Notably, apoptotic blebs
are distinct from necrotic blebs, which are generally larger, independent of actomyosin
contraction, and are generated after membrane permeabilisation [21].

Apoptotic membrane blebbing is regulated by several protein kinases, in particular the Rho-
associated protein kinase 1 (ROCK1) [22]. During apoptosis, active caspase 3 proteolytically
cleaves ROCK1 and triggers kinase activation by releasing its autoinhibitory C-terminal domain
[20,22]. In turn, caspase-activated ROCK1 phosphorylates myosin light chain (MLC) of myosin II
and promotes actomyosin contraction to facilitate membrane blebbing [20]. The importance of
ROCK1 activation in apoptotic membrane blebbing has been demonstrated in a variety of cell
types including fibroblasts [12,23], epithelial cells [24], and T cells [20]. In addition to ROCK1,
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Figure 1. Morphological Stages of Apoptotic Cell Disassembly. The disassembly of an apoptotic cell can be divided into three sequential morphological steps.
Step 1 describes the formation of balloon-like membrane structures at the cell surface, termed apoptotic membrane blebs. After the onset of blebbing, the apoptotic cell
can generate different types of apoptotic membrane protrusions (Step 2), including microtubule spikes (Step 2a), apoptopodia (Step 2b), and beaded apoptopodia (Step
2c). At the later stages of cell death, the apoptotic cell and/or apoptotic membrane protrusions can undergo fragmentation to generate separate apoptotic bodies (small
membrane-bound vesicles less than 5 mm in diameter) from the apoptotic cell body (Step 3). Dotted lines indicate that for some cell types Step 2 can occur in the absence
of Step 1, and Step 2 is not a prerequisite for Step 3.
MLC kinase (MLCK) has been implicated in mediating apoptotic membrane blebbing [7].
However, the molecular mechanism responsible for MLCK activation during apoptosis is
unclear. Furthermore, caspase-mediated cleavage of the serine/threonine LIM domain kinase
1 (LIMK1) is sufficient to induce LIMK1 activation and promote membrane blebbing in apoptotic
human T cells and epithelial cells [25]. Because LIMK1 can inactivate cofilin, an actin-binding
protein that facilitates actin depolymerisation, caspase-activated LIMK1 may support apoptotic
Table 1. Morphological Steps of Apoptotic Cell Disassembly Can Be Observed under In Vivo Conditions

Tissue Cell type Apoptotic
stimulus

Step
observed

Method of detection Key findings Refs

Skeletal muscle Myoblast Homeostatic Step 1 Immunohistochemistry Myoblasts undergo plasma-membrane blebbing [18]

Cardiac tissue Not specified Homeostatic Step 1/3 Immunohistochemistry Autoantigens are distributed into apoptotic
membrane blebs and ApoBDs

[76]

Thymus Thymocyte Irradiation Step 1/3 Scanning electron
microscopy

Thymocytes can generate an abundance of
ApoBDs

[15]

Lymph node T cell Homeostatic Step 3 Intravital two-photon
imaging

Apoptotic T cells can disassemble into ApoBDs [66]

Hair follicle
epithelium

Basal epithelial cell Laser ablation Step 3 Intravital multiphoton
microscopy

Apoptotic epithelial cell-derived ApoBDs are
phagocytosed by surrounding viable epithelial cells

[16]

Thymus Thymocyte Dexamethasone Step 3 Flow cytometry PANX1 is a negative regulator of apoptotic
thymocyte disassembly

[9]

Aorta Not specified Atherosclerosis Step 3 Histology ApoBDs may accumulate in atherosclerotic plaques [82]

Trends in Cell Biology, February 2017, Vol. 27, No. 2 153



Step 1. Apopto�c
membrane blebbing

Step 2a. Microtubule spikes

Step 2b. Apoptopodia

Step 2c. Beaded apoptopodia

Step 3. Cell fragmenta�on

Apoptopodia forma�on

Microtubule spike forma�on

Beaded apoptopodia
forma�on

Phagocyte

Cell types
Many cell types
e.g., epithelial,

fibroblasts,
lymphocytes,

monocytes

Cell types
Squamous

epithelial cells
(A431), Jurkat

T cell, HeLa
epithelial cells

Cell types
Jurkat T cells,
thymocytes,

LR73 fibroblasts

Cell types
THP-1 monocytes,

primary CD14+

monocytes

Ac�n
depoly

merisa�on
Cofilin

LIMK1

LIMK1Ac�ve

Ac�ve

Ac�ve

Caspase 3
ROCK1

MLC

MLC P

MLCK

Actomyosin
contrac�on

Nuclear contentMicrotubule spike

Microtubule

Nuclear content

Apoptopodia

Protrusion elonga�on

Segmenta�on

Beaded apoptopodia

Beaded apoptopodia

Apoptopodia

Shear force?

Interac�on with phagocytes?

Microtubule spike

Abscission-like process?

Ac�ve
PANX1

PANX1

PANX1 Ac�ve
PANX1

Vesicular transport

Caspase 3/7

Caspase 3/7

Vesicular transport

Maintain membrane integrity

Assembly of apopto�c
microtubule network

Microtubule
polymerisa�on

Facilitate late plasma-
membrane bleb forma�on

BlebsPlasma-
membrane

blebbing

ROCK1

PAK2

PAK2
?

Cofilin P

Figure 2. Molecular Mechanisms of Apoptotic Cell Disassembly. Apoptotic membrane blebbing (Step 1) is
regulated by several protein kinases including ROCK1, LIMK1, MLCK, and PAK2. Assembly of microtubule network is
required for the maintenance of plasma-membrane integrity, late-stage blebbing, and microtubule spike formation (Step
2a). The formation of apoptopodia (Step 2b) and beaded apoptopodia (Step 2c) is regulated by PANX1 channels and
vesicular transport. Beaded apoptopodia are generated through an initial protrusion elongation phase, followed by a
segmentation phase. Finally, apoptotic membrane protrusions can undergo fragmentation to generate individual apoptotic
bodies (Step 3). Although currently undefined, apoptotic body release may be facilitated by shear force, an abscission-like
process, or through interactions with neighbouring phagocytes.
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membrane blebbing by promoting actin polymerisation through cofilin inhibition [26,27]. Lastly,
caspase-mediated activation of p21-activated kinase (PAK2) has also been implicated in
facilitating apoptotic membrane blebbing and consequently the formation of ApoBDs in human
T cells [28]. It should be noted that the role of these kinases in apoptotic cell disassembly is
based largely on pharmacological studies or the expression of dominant negative mutants in a
limited number of cell types [22]. Therefore, further validation by genetic approaches using a
diverse array of cell types is necessary to define the importance of ROCK1, MLCK, LIMK1, and
PAK2 in apoptotic cell disassembly.

In addition to actomyosin contraction, microtubule assembly plays a prominent role in apoptotic
cell disassembly by preventing premature membrane lysis and regulating membrane blebbing.
During the early stages of apoptosis, the existing interphase microtubule network is dismantled,
and densely packed microtubules reform against the plasma membrane, creating a ‘cocoon’-
like structure termed the apoptotic microtubule network (AMN) [29,30]. The formation of AMN
aids in membrane stability and prevents membrane permeabilisation, thus avoiding the early
onset of secondary necrosis [29]. This AMN-dependent membrane stability could be required for
the morphological changes of apoptotic cell disassembly. The establishment of AMN during
apoptosis may also act in concert with actin dynamics to regulate late-stage apoptotic
membrane blebbing and bleb composition in apoptotic epithelial cells [8,31].

Step 2a. Apoptotic Membrane Protrusions: Microtubule Spikes
It has been assumed that blebbing alone is responsible for the formation of ApoBDs [12,31].
However, some cell types including neuronal and epithelial cells undergo dynamic apoptotic
membrane blebbing in the absence of ApoBD formation in vitro [1]. Therefore, apoptotic
membrane blebbing alone is not sufficient to mediate ApoBD formation for particular cell types,
and additional processes may act in concert with and/or independently of blebbing to facilitate
apoptotic cell disassembly. A type of rigid and microtubule-rich membrane protrusion, the
microtubule spike, was identified on apoptotic human A431 epithelial cells that could aid in
ApoBD formation in the presence or absence of membrane blebbing [8] (Figure 2). Microtubule
spikes were observed at the periphery of A431 cells approximately 1 h after the onset of
apoptotic membrane blebbing [8]. The formation of microtubule spikes was suggested to
facilitate the separation of membrane blebs into individual ApoBDs, with individual or clusters
of ApoBDs attaching to either the tip or along the length of the spike [8]. Inhibition of actomyosin
contraction by the ROCK1 inhibitor Y-27632 markedly reduced apoptotic membrane blebbing
but had minimal effects on ApoBD formation [8,31]. By contrast, inhibition of microtubule
polymerisation by nocodazole impaired both apoptotic membrane blebbing and microtubule
spike formation, resulting in a significant reduction in ApoBD formation [8,31]. These findings
highlight that apoptotic membrane blebbing is not a prerequisite for ApoBD formation by
particular cell types, and other processes such as microtubule spikes alone may be sufficient
to drive apoptotic cell disassembly.

Step 2b. Apoptotic Membrane Protrusions: Apoptopodia
In support of the notion that additional processes besides membrane blebbing are required for
ApoBD formation, thin string-like membrane protrusions termed apoptopodia are generated
during the progression of apoptosis (Figure 2). After dynamic membrane blebbing, apoptotic
human Jurkat T cells, primary mouse thymocytes, and fibroblasts generate apoptopodia
between membrane blebs (Step 2b). These membrane blebs then separate from the cell body
to form distinct ApoBDs [9]. While it is unclear which cytoskeletal components are involved in
apoptopodia formation, the caspase-activated pannexin 1 (PANX1) channel was identified as a
key regulator of apoptopodia formation [9]. Before apoptotic membrane blebbing and exposure
of the ‘eat-me’ signal phosphatidylserine (PtdSer), PANX1 is activated by caspase 3 and 7,
resulting in the release of ‘find-me’ signals into the extracellular space [9,32–34].
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Unexpectedly, pharmacological or genetic inhibition of PANX1 activity not only blocked the
release of ‘find-me’ signals but also promoted the formation of apoptopodia and ApoBDs [9].
Thus, PANX1 is a negative regulator of apoptotic cell disassembly [9]. It is important to note that
the ability of PANX1 to positively and negatively regulate the release of ‘find-me’ signals and
ApoBD formation by apoptotic cells, respectively, raises an intriguing possibility that these two
processes are inversely related with regards to controlling the efficiency of apoptotic cell
clearance. For example, specific apoptotic cell types may have a higher level of caspase-
activated PANX1, which favours the recruitment of macrophages rather than cell disassembly,
which supports efficient cell clearance. Conversely, some apoptotic cell types may have a lower
level of caspase-activated PANX1 to favour ApoBD formation, which would aid in their removal
by neighbouring or distant phagocytes.

Although PANX1 has been implicated in a variety of processes including cell fusion [35],
inflammasome activation [36], T cell activation [37], and pyroptosis [38], the molecular basis
of how PANX1 controls apoptopodia formation is undefined. In addition to PANX1, vesicular
transport was recently identified as a process that regulates apoptopodia formation and
apoptotic cell disassembly [1], possibly by mediating the trafficking of additional membrane
materials and/or molecular factors to aid in the generation of apoptopodia.

Step 2c. Apoptotic Membrane Protrusions: Beaded Apoptopodia
Another type of apoptopodia-like membrane structure was described recently in apoptotic
human THP-1 monocytic cells and primary human monocytes, termed beaded apoptopodia [1]
(Figure 2). After apoptosis induction, monocytes undergo subtle early-stage membrane
blebbing, followed by the formation of thin membrane protrusions [1]. Through a segmenta-
tion-like event, these protrusions are transformed into a string of connecting membrane vesicles
that are generally 1–3 mm in diameter. Finally, membrane vesicles are dissociated from the
beaded apoptopodia and generate an abundance of ApoBDs [1]. It should be noted that the
formation of ApoBDs via beaded apoptopodia appears to be highly efficient at forming vesicles.
Instead of individual or a small number of ApoBDs being separated from the cell body via
microtubule spikes or apoptopodia, fragmentation of a single strand of beaded apoptopodia can
release many (approximately 10–20) ApoBDs simultaneously [1]. Therefore, the formation of
beaded apoptopodia represents a unique mechanism of generating a large amount of ApoBDs
rapidly [1]. Interestingly, beaded apoptopodia and ApoBD formation can also be observed in a
small subset of monocytes that fail to undergo apoptotic membrane blebbing [1], further
supporting the concept that membrane blebbing is not a prerequisite for apoptotic cell disas-
sembly. The formation of beaded apoptopodia was also found to regulate selective sorting of
cellular contents into ApoBDs. In contrast to ApoBDs generated by fibroblasts [39], epithelial
cells [31], and thymocytes [40], ApoBDs generated from apoptotic THP-1 monocytes were
devoid of nuclear contents [1].

Similar to apoptotic T cells, the disassembly of apoptotic monocytes via beaded apoptopodia is
also regulated by caspase-activated PANX1 channels and vesicular transport [1]. However, it is
worth noting that, although similar mechanisms appear to control both apoptopodia and
beaded apoptopodia formation, the morphologies of these protrusions are substantially differ-
ent. One possible reason for these differences could be the degree of apoptotic membrane
blebbing during protrusion formation. As mentioned, beaded apoptopodia are generated after a
subtle period or absence of membrane blebbing [1], whereas apoptotic T cells undergo dynamic
membrane blebbing before and during apoptopodia formation [9]. Thus, the presence or
absence of apoptotic membrane blebbing (Step 1) may determine whether the apoptotic cell
will generate apoptopodia (Step 2b) or beaded apoptopodia (Step 2c), respectively. In support
of this concept, inhibition of apoptotic T cell membrane blebbing during cell disassembly
promoted the formation of beaded apoptopodia rather than of apoptopodia [1].
156 Trends in Cell Biology, February 2017, Vol. 27, No. 2



Step 3. Apoptotic Cell Fragmentation into ApoBDs
After the formation of apoptotic membrane blebs (Step 1) and/or protrusions (Step 2), the final
stage of apoptotic cell disassembly is the disassociation of ApoBDs from the cell body or
neighbouring ApoBDs (Step 3) (Figure 2). Although the mechanism controlling Step 3 is
currently undefined, it may involve both cell-extrinsic and cell-intrinsic factors. One likely
cell-extrinsic factor that could promote the separation of ApoBDs from apoptotic membrane
protrusions is the presence of shear force in the extracellular environment. For example,
following the separation of apoptotic membrane blebs by apoptopodia [9], shear force
generated by the flow of surrounding culture media in vitro may break the connection between
apoptopodia and ApoBDs. This phenomenon shares similarities with platelet formation where
shear force in the vasculature can facilitate the fragmentation of long beaded strands of
proplatelets generated by megakaryocytes [41,42]. Furthermore, interactions between cells
undergoing apoptotic cell disassembly and neighbouring phagocytes (discussed further
below) may generate the necessary physical force to disrupt apoptotic membrane protrusions
and aid in the release of ApoBDs. The ability of neighbouring cells to exert force on apoptotic
cells is well documented in the context of extruding apoptotic epithelial cells from the epithelium
[43]. In addition to cell-extrinsic factors, the generation of ApoBDs through beaded apopto-
podia may be intrinsically regulated via an abscission-like process that could ‘pinch-off’
individual ApoBDs from the protrusion, possibly resembling the cytokinetic abscission process
during cell division. However, the molecular machinery that regulates the segmentation and
fragmentation of beaded apoptopodia is yet to be defined.

The Role of Apoptotic Cell Disassembly in Cell Clearance and Intercellular
Communication
The formation of ApoBDs has been proposed to mediate two key functions: (i) to aid in the
efficient removal of apoptotic cells, and (ii) to carry biomolecules such as nucleic acids and
proteins to facilitate intercellular communication. We describe here the functions of apoptotic cell
disassembly and the importance of this process in normal physiological and pathological
conditions.

Apoptotic Cell Disassembly in Inflammatory and Autoimmune Disease
If apoptotic cells are not rapidly removed by phagocytes, the dying cell can undergo secondary
necrosis when the plasma membrane becomes permeabilised, leading to the release of
proinflammatory intracellular contents and the triggering of unwanted inflammation [44]. These
harmful consequences of impaired cell clearance are evident in the cardiovascular disease
atherosclerosis, whereby an accumulation of uncleared post-apoptotic debris can
promote chronic inflammation and the formation of necrotic plaques [45,46]. Furthermore,
defects in apoptotic cell clearance have been linked to the onset and/or progression of
autoimmune diseases such as systemic lupus erythematosus (SLE). For a subgroup of SLE
patients, impaired cell clearance results in the accumulation of post-apoptotic debris that can
promote inflammation and exposure to autoantigens [47–49]. Thus, because efficient apopto-
tic cell clearance is imperative to maintain tissue homeostasis, a series of molecular mecha-
nisms have been described that could facilitate the prompt removal of apoptotic cells. First,
‘find-me’ signals such as ATP are released by apoptotic cells to recruit nearby macrophages to
the site of cell death [33]. Following phagocyte recruitment, engulfment of apoptotic cells is
triggered through the recognition of ‘eat-me’ signals, such as PtdSer, exposed on the surface
of apoptotic cells [9,50–52].

In addition to these mechanisms, the morphological changes of apoptotic cell disassembly may
aid in their efficient clearance. In particular, blockade of apoptotic Jurkat T cell membrane
blebbing by inhibitors of actomyosin contraction markedly reduced their uptake by primary
human monocyte-derived macrophages [53]. Although the precise mechanism of how
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membrane blebbing promotes cell clearance is undefined [53], it is tempting to speculate that
inhibition of apoptotic membrane blebbing could block the formation of ApoBDs and conse-
quently reduce the efficiency of macrophage engulfment. In addition, the formation of microtu-
bule spikes (Step 2a) has been proposed to aid in cell clearance by promoting interactions
between apoptotic cells and phagocytes [8]. THP-1 monocytic phagocytes often interact with
ApoBDs bound to the ends of microtubule spikes, suggesting that microtubule spikes ‘present’
ApoBDs to surrounding phagocytes [8]. Notably, blocking microtubule spike formation with
nocodazole reduced the interactions between apoptotic A431 epithelial cells with THP-1
phagocytes, as well as the levels of apoptotic cell engulfment [8]. However, inhibition of
microtubule polymerisation by nocodazole may also impair the phagocytic efficiency of THP-
1 phagocytes [54,55]. Nevertheless, the formation of apoptotic membrane protrusions such as
microtubule spikes, and possibly apoptopodia and beaded apoptopodia, represents a mecha-
nism that could promote cell clearance by facilitating the initial interaction between apoptotic
fragments and phagocytes.

It is well documented that a deficiency in apoptotic cell clearance machineries (e.g., Mertk, C1q)
in mice can lead to the development of SLE-like diseases [49,56–58] and atherosclerosis [59].
Thus, mice lacking key positive and negative regulators of apoptotic cell disassembly, such as
ROCK1 and PANX1, may be more or less susceptible to these pathological conditions,
respectively. Although such phenotypes have yet to be reported for mice deficient in ROCK1
[60,61] or PANX1 [9,62,63], it should be noted that both ROCK1 and PANX1 can regulate other
aspects of cell clearance in addition to ApoBD formation. For example, pharmacological
inhibition of ROCK1 by Y-27632 promotes the phagocytic activity of fibroblasts, demonstrating
ROCK1 as a negative regulator of phagocytosis [64]. Furthermore, PANX1 regulates phagocyte
recruitment and inflammatory responses towards apoptotic cells by controlling the release of
ATP during apoptosis [32,65]. Therefore, the function of ROCK1 and PANX1 in apoptotic cell
clearance is complex and needs to be addressed cautiously. Despite the limited number of
studies that examine the importance of apoptotic cell disassembly in cell clearance, it is evident
that ApoBD formation and their removal can occur in vivo [15,16,66,67]. Thus, the disassembly
of apoptotic cells may play a key role in maintaining homeostasis and preventing the develop-
ment of diseases associated with impaired cell clearance.

Transport of Biomolecules through ApoBDs
Membrane-bound extracellular vesicles like exosomes and microparticles play an important role
in intercellular communication by facilitating the transfer of biomolecules between cells [68,69].
For example, dendritic cell (DC)-derived exosomes regulate immunity by facilitating antigen
trafficking [6,70]. Similarly, microparticles mediate the transport of microRNAs [71] and regulate
vascular repair [72]. Likewise, ApoBDs can carry DNA, RNA, and proteins, suggesting that they
can mediate intercellular communication through the transport of these biomolecules (Figure 3).

During apoptosis, membrane blebbing and protrusion formation facilitates the distribution of
nuclear material into ApoBDs [1,8]. Subsequently, the transport of genomic DNA to neighbour-
ing cells via ApoBDs enables horizontal gene transfer between different cell types [14,39]. For
example, DNA packaged into lymphoma-derived ApoBDs was engulfed by surrounding fibro-
blasts, resulting in the integration of lymphoma-derived DNA into the fibroblast genome [14]. The
functional significance of transporting DNA through ApoBDs was exemplified by the transport of
oncogenes (h-Ras and c-Myc) via ApoBDs to recipient cells lacking p53, which promoted
tumour formation in vivo [39]. In addition to DNA, ApoBDs derived from apoptotic endothelial
cells have been shown to mediate the transfer of microRNA-126 to healthy endothelial cells
in vitro and to induce the expression of chemokine CXCL12 by recipient endothelial cells [13]. In
a mouse model of atherosclerosis, repetitive administration of microRNA-126-containing
ApoBDs resulted in atheroprotective effects, possibly by inducing CXCL12 expression in luminal
158 Trends in Cell Biology, February 2017, Vol. 27, No. 2
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Similar to apoptotic cells, ApoBDs expose the ‘eat-me’ signal PtdSer to promote recognition and uptake by phagocytes. Whether ApoBDs can release ‘find-me’ signals
(e.g., nucleotides) or expose other ‘eat-me’ signals (e.g., CRT) and ‘don’t eat-me’ signals (e.g., CD47) is currently undefined. It should be noted that, if apoptotic cells are
unable to disassembly into ApoBDs, the presence of bridging molecules such as MFG-E8 can facilitate their uptake by macrophages.
cells of aortic root plaques and recruiting endothelial progenitor cells to mediate vascular repair
[13]. It is interesting to note that DNA and RNA were packaged into separate ApoBDs generated
from apoptotic HL-60 promyelocytic cells [73]. Although the mechanism and functional signifi-
cance of this phenomenon is unclear, this observation highlights the ability of ApoBDs to carry
different cellular contents (e.g., either DNA or RNA) and may represent different functional
properties in ApoBDs.

In addition to nucleic acids, the transfer of proteins via ApoBDs to professional phagocytes such
as macrophages and DCs could play a role in regulating immunity. Proteomic analysis of
thymocyte-derived ApoBDs demonstrated enrichment of autoantigens and proinflammatory
molecules in ApoBDs, including various nuclear proteins and heat shock protein 90 [40].
Similarly, ApoBDs generated from apoptotic lymphoblasts contained nuclear proteins including
histones 1, 2A, 2B, 3, and 4, as well as the autoantigen La/SSB [74]. Multiple groups have
reported the distribution of protein autoantigens into apoptotic membrane blebs and ApoBDs of
various cell types (e.g., epidermal cells, T cells, cardiomyocytes) in vitro and in vivo [75,76].
Notably, primary human monocyte-derived macrophages were able to engulf ApoBDs con-
taining autoantigens, indicating that autoantigens could be transferred to professional phag-
ocytes via ApoBDs [74]. However, whether the trafficking of autoantigens via ApoBDs can affect
the maintenance of immune tolerance is not well defined. In addition to autoantigens, endothelial
cell-derived ApoBDs were found to contain the precursor and processed form of proinflam-
matory cytokine IL-1/ [77]. ApoBDs containing IL-1/ were able to stimulate the production of
chemokine IL-8 by healthy endothelial cells in vitro and to induce the infiltration of neutrophils into
the peritoneal of mice [77]. Although the mechanism underpinning the release of IL-1/ from
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Outstanding Questions
Why do different cell types disassem-
ble differently during apoptosis?

What are the key cytoskeletal compo-
nents that regulate apoptopodia and
beaded apoptopodia formation?

How does PANX1 regulate the forma-
tion of apoptopodia and beaded
apoptopodia?

What is the mechanism that controls
the final fragmentation stage of apo-
ptotic cell disassembly?

Does the formation of apoptotic mem-
brane protrusions occur in vivo?

What is the purpose of generating
apoptotic bodies (ApoBDs) of specific
sizes and contents?

Are ApoBDs preferentially engulfed by
a specific type of phagocytes?

Can ApoBDs travel vast distances
within an organism to regulate intercel-
lular communications?

Would defects in regulators of apopto-
tic cell disassembly lead to disease
phenotypes?
ApoBDs is not defined [77], early membrane lysis could release intracellular contents within
ApoBDs, as seen in a subset of ApoBDs [23].

The disassembly of apoptotic cells has also been proposed to aid in the transfer of infectious
agents. For example, phagocytic uptake of apoptotic fragments derived from HIV-infected
T cells by neighbouring epithelial cells mediated the transfer of HIV proteins and genome into
epithelial cells, resulting in the transcription and expression of HIV proteins [78]. Furthermore,
efficient removal of ApoBDs generated from prion-infected apoptotic neurons may be required
to prevent the onset of prion disease [79]. Thus, ApoBDs can function as a ‘Trojan horse’ for
infectious agents [80,81].

Concluding Remarks and Future Directions
It is becoming increasingly clear that apoptotic cell disassembly is a complex process, involving
highly coordinated morphological steps. Depending on the mechanism used by a particular cell
type to undergo apoptotic cell disassembly, a different quantity and quality of ApoBDs will be
generated. These observations raise several unanswered questions as to why different cell types
need to disassemble differently and the functional significance of such diversity (see Outstanding
Questions). Determining the function of ApoBDs in different physiological and pathological
contexts may shed light on the importance of apoptotic cell disassembly for different cell types.
Lastly, it is worth noting that several compounds, including clinically approved drugs, have been
identified that can either block or enhance ApoBD formation [9]. Thus, it is feasible to modulate
apoptotic cell disassembly pharmacologically, and this may represent a novel therapeutic
approach to treat diseases associated with the formation of ApoBDs.
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